Glaciers gain mass in their upper reaches (accumulation zone) and lose mass at their snout (ablation zone). The majority of glaciers flow (and transfer mass) at a steady rate. However, some glaciers switch between periods of slow and fast flow.
Surging glaciers have relatively long periods of ice build-up and slow ice flow before a sudden release of mass and a short-lived period of much faster (sometimes up to 1000 times faster) ice flow1,2. These surge cycles are largely driven by internal processes and are unrelated to climate3,4 (note, however, that surge glaciers are generally found within an optimal climate envelope5).
The two phases of glacier surging are known as the active phase and quiescent phase6. In the active phase, ice is moved rapidly from a reservoir zone (most commonly high up on the glacier) to the snout. In this phase, ice may flow at a rate of 10s of metres per day. This fast transfer of mass also tends to cause an advance of the glacier snout. In the quiescent phase between surges, glacier flow slows down, the snout stagnates, and ice once again builds up in the reservoir zone. The active phase of a surge can last from 1 year to 3-10 years, whereas the quiescent phase can be 10s or even 100s years long7,8,9.
As glacier fluctuations are commonly used to reconstruct past climate changes, the ability to distinguish between climate-driven advances and those not related to climate (i.e. glacier surges) is important.
There is no one landform on its own that is indicative of glacier surging. However, glacier surges leave behind a distinctive assemblage (or group) of landforms in the landscape.
Landform assemblages of surging glaciers
Push moraines and thrust-block moraines
The maximum limit of a surge is marked by moraines10,11. These may be single ridge push moraines, or zones of multiple closely spaced ridges that are pushed up in a single ‘block’ as a rapidly advancing snout deforms, compresses, and ‘thrusts up’ sediment on the glacier foreland. For this reason, these are known as thrust block moraines.
Hummocky moraine
During a surge, rapid flow causes the ice to stretch, bend, fold and fracture7. This deformation of ice (particularly a process known as ‘thrusting’) can move large volumes of sediment from the bed (or from within the glacier) up on to the glacier surface12. In the quiescent phase, after the surge has taken place, the melting of the stagnant snout gradually lowers this sediment to the land surface, where it forms a zone of hummocky mounds and hollows.
In the surging glacier landsystem10,11, belts of hummocky moraine can be found on the ice-contact slopes of push moraines or thrust-block moraines, as this is the area where stagnating ice develops most extensively during the quiescent phase.
Ice-cored outwash
Another common feature of surge glacier forelands are areas of ice-cored outwash10,11. Toward the end of surge, some glaciers release large volumes of meltwater that transport and deposit sediment across the stagnant glacier snout. As this sediment-covered ice melts over time, small lakes (kettles) may form at the outwash surface.
Flutes
Flutes are streamlined ridges of sediment formed at the glacier bed. In themselves, flutes are not diagnostic of glacier surging, as they are found at many temperate glacier types. However, flutes formed by a glacier surge are often particularly long (over 1 km long in some cases) and unbroken, as they were created by a single, rapid glacier advance13.
In contrast to non-surging glacier types, flutes are often also found is close association with crevasse-squeeze ridges (see below) when formed during surges.
Crevasse-squeeze ridges
During a surge, glacier ice stretches and fractures7, which creates many crevasses that pass all the way through the glacier (video below), from the ice surface to the bed.
Once the surge is over (when there is a drop in basal water pressure) sediment is squeezed upwards into open basal crevasses. As the snout stagnates and ice melts away during the quiescent phase following a surge, a cross-cutting network of crevasse-squeeze ridges is left behind in the landscape12,14.
The surging glacier landsystem
While there are slight differences from glacier to glacier, the surging glacier landsystem10,11 tends to be spatially arranged in three main zones: an outer zone of push and thrust-block moraines (this represents the maximum extent of a surge), an intermediate zone of hummocky moraine (where snout stagnation occurs post-surge), and an inner zone of flutes, crevasse-squeeze ridges (where ice has overridden the foreland), and areas of ice-cored and pitted outwash.
Because glacier surging is cyclical in nature, the surging glacier landsystem may also contain evidence of several surge events, such as overridden moraines, which are smoothed by the overriding ice and often have flutes across their surface.
In summary, surging glaciers leave a distinct imprint on the land surface. No one landform is concrete evidence of a past glacier surge, but where a full assemblage of landforms (the surging glacier landsystem) occurs, the activity of past surging glaciers (in areas that are no longer glaciated) can be studied and reconstructed15,16.