The Loch Lomond Stadial in Britain
Between around 13 and 11 thousand years ago, the climate in Britain, as well as across much of Northern Europe, cooled abruptly1. This short-lived cold period temporarily reversed the general pattern of warming that drove the retreat of ice sheets after the Last Glacial Maximum, causing glaciers to readvance in many mountain regions.
In Britain, this cold snap is known as the Loch Lomond Stadial. In the Loch Lomond Stadial, an ice cap grew over the western Highlands of Scotland2,3, along with other smaller icefields, valley glaciers, and cirque glaciers that formed in the mountains and uplands of Scotland, England (e.g. Lake District4) and Wales (e.g. Snowdonia5).
Loch Lomond Stadial cirque glaciers
In the Loch Lomond Stadial, cirque glaciers formed in areas that were close to the threshold for glaciation6, such as around the margins of larger icefields, or in areas where the climate was not suited (e.g. warmer melt season temperatures7) to forming larger glaciers, typically further away from the main centre of glaciation in the Scottish Highlands.
Cirque glaciers occupied bedrock hollows (cirques) in mountain sides or the lee (downwind) side slopes of escarpments. Cirques with a north or northeasterly aspect were particularly favourable sites for glaciation5 as they protected the ice from direct solar radiation for much of the day, resulting in less ice-melt across the year8.
In addition, southwesterly prevailing winds blew snow from mountain summits and plateaus into the cirques below that, along with avalanches from steep cirque sides, added to glacier mass5,9.
In summary, topography played an important role in Loch Lomond Stadial cirque glaciation in Britain and, in turn, the landsystem these cirque glaciers created6.
Landforms created by Loch Lomond Stadial cirque glaciers
The cirque glacier landsystem of upland Britain6 contains landforms created directly by glacier ice, and landforms related to periglacial and paraglacial activity outside the limits of glacier cover.
Inside the limits of glaciation
Moraines
The maximum extent of Loch Lomond Stadial cirque glaciers is typically marked by a terminal moraine6. This may occur as a single, arcuate terminal ridge, or as a small belt of moraines around the maximum ice extent. Sometimes, although not always, recessional moraines extend some way back into the cirque floor, recording active glacier retreat5.
Sometimes, terminal moraines are large in comparison to the cirque glacier that formed them. Such large moraines form in two main scenarios. First, where a glacier snout remained stable at a given location for a prolonged period of time6, allowing a large amount of debris to build up around its margin. Second, where glacier advance entrained a large amount of debris from the cirque floor and sides (possibly left behind by earlier glacial and paraglacial activity).
Drift limits
The limit of cirque glaciers is not always marked by moraine ridges5. Sometimes, glacial extent is recorded by ‘drift’ – a fairly homogenous blanket of glacial diamict (‘till’). The drift covered floor of some cirques contrasts greatly with the drift-free slopes above, allowing the vertical thickness of ice to be estimated10.
Hummocky drift
Inside terminal moraines, it is common to observe hummocky drift mounds, which display no obvious alignment to a former ice margin5,6 and may reflect the wastage of ice and/or the chaotic dumping of debris during deglaciation.
Erosional landforms
Along with the depositional landforms described above, the floor and sides of cirques were often eroded by Loch Lomond Stadial glaciers, forming of ice-moulded bedrock, roches moutonnées, and striations5, which show that cirque glaciers were (at least at times) warm based.
Outside the limits of glaciation
Summit blockfields and frost weathered debris
Blockfields and frost-weathered debris are commonly found on the mountain summits above cirque basins, and talus slopes often blanket cirque sides above the limit of glaciation. These periglacial features, formed by frost-weathering in extremely cold conditions11, are therefore a useful indicator of the vertical thickness of ice12.
Protalus ramparts
Protalus ramparts have the appearance of moraine ridges but were not formed by glacier ice13,14. Instead, they formed around perennial snowbeds, where debris weathered from the cirque backwall or sides fell on to the snowbed and slid or rolled downslope to accumulate as ridges around the snowbed margin.
Rockslope failures
Rockslopes failures often create moraine-like ridges and/or hummocky deposits that may be mistaken for glacier limits, especially when they occur in cirques15. Rockslope failures are, however, paraglacial features (i.e. features formed by unstable conditions following the retreat of glacial ice from an area16), mostly formed because of high seismic activity caused by postglacial rebound following the last ice sheet glaciation of Britain17.
The cirque glacier landsystem of the Loch Lomond Stadial
In summary, the cirque glaciation landsystem6 created throughout upland Britain during the Loch Lomond Stadial contains: (1) outer limits marked by moraines and drift, with recessional moraines on some cirque floors indicating active retreat in deglaciation; (2) erosional landforms, such as roches moutonnées and striations that provide evidence of warm based ice; and (3) periglacial (e.g. talus slopes) and paraglacial (rock slope failures) landforms created outside glacier limits.