Roches moutonnées are asymmetric bedrock bumps or hills with a gently sloping and abraded upglacier (stoss) face and a quarried (or plucked) downglacier (lee) face that is typically blunter1,2. A good example of a roche moutonnée is shown in the image below.
Roches moutonnées range in size from several metres to several hundreds of metres across, and often occur in clusters1 (see image below). They may be found emerging from beneath actively deglaciating ice masses (see image below), or on the sides and bottom of deglaciated valleys where they were once overridden by glacial ice3,4. Their distinctive form, which is partly linked with the orientation of glacier flow, make roches moutonnées useful to glaciologists aiming to reconstruct the flow direction of former glaciers.
How do roches mountonnées form?
Roches mountonnées develop their distinctive morphology due to the pattern of stress on a bedrock surface beneath a sliding glacier, as shown in the diagram below. On the stoss side of bedrock bumps, normal stresses are relatively high and particles embedded in the ice are moved across the underlying surface where they carry out abrasion5,6. The evidence of such abrasion is the common occurrence of striations (i.e. scores and scratches on bedrock) on the sloping upper surface and flanks of roches moutonnées (see image below).
On the lee side of bedrock bumps, normal stresses are lower, which allows a cavity to form between the ice and bed (see diagram above) and prevents abrasion. In its place, bed cavities increase stress build up in the bedrock immediately upstream of the cavity, causing rock fracture and erosion by quarrying (or plucking). This process is particularly efficient where water pressure at the bed regularly changes3,7,8,9 (see diagram below).
The quarrying of rock at the lee end of roches mountonnées is also strongly influenced by the joint distribution in the parent rock3, and determines the size and shape of quarried rock fragments (see diagram below).
What do roches mountonnées tell us about former glaciers?
Through an understanding of how roches mountonnées are formed, glaciologists are able to make inferences about the nature of past glacier systems where such landforms are found.
As roches mountonnées are most likely to form where cavities exist at the glacier bed, it is common for them to develop where the ice overburden pressure is low (i.e. where ice is relatively thin). Such conditions occur beneath thin cirque or valley glaciers, or near the margins of ice sheets3,4,10. This also means that roches moutonnées may be more likely to develop during deglaciation, when a glacier or ice sheet thins, ice overburden pressure decreases, and gaps between the ice and bed open up11 (see diagram below).
Because roche mountonnée formation is also aided by fluctuations in basal water pressure, they are most likely to occur beneath warm-based (temperate) glaciers with hydrological systems that direct meltwater the bed10. The fact that they contain abraded (i.e. polished and striated) surfaces (see image above) also informs glaciologists that the ice responsible for their formation was (at least at times) warm based and moving by basal sliding, as well as carrying a basal debris load.